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with
A simple method is described to solve Poisson’s equation in an

annulus using conformal mapping and fast Fourier transforms.
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We communicate a method to solve the Poisson equation
in an annulus which is fast and convenient because it allows
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the application of the standard fast Fourier transform
(FFT). The problem arises, e.g., in the context of modelling
the scrape-off layer in a tokamak plasma when the plasma
is no longer charge neutral.

Whereas the solution is in principle simple and straightfor-We assume a circular domain between radii r0 and r1
ward, no fast numerical algorithm is known to the authorsand let the boundary condition of the potential be given by
which would be comparable to an FFT in Cartesian coordi-
nates.f(r0) 5 f0 , f(r1) 5 f1 . (1)

A better approach is to use conformal mapping. The
general principle of conformal mapping and application toThe equation to be solved is
two-dimensional practical problems is described exten-
sively by Henrici [1]. Goedbloed [2, 3] for example reduced

=2f(r, w) 5 2r(r, w). (2)
an equilibrium and stability problem of a tokamak plasma
to the solution of the Laplace equation with free bound-

Expanding in angular modes, aries and solved it by conformal methods.
Here we solve the Poisson equation in an annulus (in

the z-plane) by mapping it into a rectangular area (in5f(r, w)
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the w-plane) by the complex function w(z) 5 u(x, y) 1
iv(x, y). Then (2) is transformed into

we obtain
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and in the rectangular domain of the u-v-plane an FFTwhich has the solution
can be used. This equation is still very general because
z(w) has not been specified. Prescribing the potentials on

fm(r) 5 Er1

r0

dr9Gm(r, r9)em(r9).
all four sides of the rectangle, arbitrary singly connected
domains can be mapped into the rectangle. Imposing peri-
odic boundary conditions on two (opposite) sides andThe Green function Gm(r, r9) is given by
prescribing the potential on the other sides, doubly con-
nected domains map into the rectangle. We confine our-
selves here to the simple case of an annulus; other casesGm(r, r9) 5

1
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m(r), r . r9, can be solved in an analogous manner. For an annulus we
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choose w(z) 5 ln z 2 ln r0 with z 5 x 1 iy 5 r exp(iw), so that R̃m(0) 5 R̃m(u1) 5 0. Writing fm(u) 5 f̃m(u) 1
f̄m(u), Eq. (5) becomesresulting in

u 5 ln S r
r0
D, v 5 w. S d 2

du2 2 m2D f̃m(u) 5 2R̃m(u) (6)

An annulus in the x-y-plane with radii r0 , r1 , r0 , r1 is and
mapped into a rectangle in the u 2 v-plane, as shown in
Fig. 1. With 0 # u # u1 5 ln(r1/r0), the Poisson equation
(3) becomes S d 2

du2 2 m2D f̄m(u) 5 2FRm(0) 1 (Rm(u1) 2 Rm(0))
u
u1
G.
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Equation (6) is solved by a fast sin-transform or, reflecting
the data at u 5 0, by an FFT over twice the length:with the boundary conditions (1).

The v-coordinate is periodic so that an expansion
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The potential at u 5 0, u 5 u1 vanishes for this part of
the solution.results in

Equation (7) is integrated analytically, incorporating the
boundary conditions (1), and results in the solutionsS d 2

du2 2 m2D fm(u) 5 2Rm(u). (5)
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Rm(u) is arbitrary and does not necessarily vanish at the
boundaries. In order to apply a fast transform, we decom-
pose Rm(u) 5 R̃m(u) 1 R̄m(u), where 2 Ff0(0) 2 f0(u1) 2
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FIG. 1. Conformal mapping of an annulus on a rectangle, showing the grid points for numerical calculation.
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FIG. 3. Potential solution to the charge density of Fig. 2 and theFIG. 2. Contour plot of the charge density used in the numerical ex-
boundary conditions f0 5 f(r0) 5 0, f1 5 f(r1) 5 0.5. Note the asymmet-ample.
ric potential structure caused by the inhomogeneous boundary conditions.

f̄m(u) 5
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m2 S1 2
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sinh mu1
D and numerical solutions for the inhomogeneous case for

(a) an 8 3 8 and (b) a 16 3 16 grid. Halving the grid
spacing reduces the error by about an order of magnitude.2
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Solving for the potential on a 128 3 128 grid takes less

than a second on a 90 MHz Pentium PC.
for m ? 0.

When transforming back from the u 2 v-rectangle into
the r-w-annulus, the components of the potential (and elec-
tric field, if desired) are no longer equidistant in the r-
direction, as is seen in Fig. 1, but the distance between
points decreases for smaller r-values. From the standpoint
of numerical analysis one might wish to see a point distribu-
tion such that each point represents the same area. This
is not the case here. However, for small aspect ratios the
imbalance is insignificant and is a small price paid for being
able to use FFTs.

As numerical example we calculate the potential for the
charge distribution

r(r, w) 5 2a[15r2 2 8(r0 1 r1)r 1 3r0r1] sin w,

as shown in Fig. 2. The resulting exact potential is

f(r, w) 5 a[r4 2 (r0 1 r1)r3 1 r0r1r2] sin w

1 0.5
ln(r/r0)
ln(r1/r0)

,

with boundary conditions f0 5 0, f1 5 0.5, as shown
in Fig. 3. Figure 4 shows the solution for homogeneous
boundary conditions, for which the logarithmic term does FIG. 4. The same as Fig. 3 but with homogeneous boundary conditions

f0 5 f1 5 0.not appear. Table I gives the differences between exact
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TABLE I

The Difference between the Exact and the Numerical Solution at Selected Grid Points for the Potential Shown in Fig. 3

(a)

w

r 0.00 0.79 1.57 2.36 3.14 3.93 4.71 5.50

0.37 0.00E 1 0 0.00E 1 0 0.00E 1 0 0.00E 1 0 0.00E 1 0 0.00E 1 0 0.00E 1 0 0.00E 1 0
0.42 0.00E 1 0 1.24E 2 4 1.75E 2 4 1.24E 2 4 0.00E 1 0 21.24E 2 4 21.75E 2 4 21.24E 2 4
0.47 0.00E 1 0 2.41E 2 4 3.41E 2 4 2.41E 2 4 0.00E 1 0 22.41E 2 4 23.41E 2 4 22.41E 2 4
0.54 0.00E 1 0 3.80E 2 4 5.38E 2 4 3.80E 2 4 0.00E 1 0 23.80E 2 4 25.38E 2 4 23.80E 2 4
0.61 0.00E 1 0 4.90E 2 4 6.93E 2 4 4.90E 2 4 0.00E 1 0 24.90E 2 4 26.93E 2 4 24.90E 2 4
0.69 0.00E 1 0 6.77E 2 4 9.57E 2 4 6.77E 2 4 0.00E 1 0 26.77E 2 4 29.57E 2 4 26.77E 2 4
0.78 0.00E 1 0 7.23E 2 4 1.02E 2 3 7.23E 2 4 0.00E 1 0 27.23E 2 4 21.02E 2 3 27.23E 2 4
0.88 0.00E 1 0 1.19E 2 3 1.68E 2 3 1.19E 2 3 0.00E 1 0 21.19E 2 3 21.68E 2 3 21.19E 2 3
1.00 0.00E 1 0 0.00E 1 0 0.00E 1 0 0.00E 1 0 0.00E 1 0 0.00E 1 0 0.00E 1 0 0.00E 1 0

(b)

0.37 0.00E 1 0 0.00E 1 0 0.00E 1 0 0.00E 1 0 0.00E 1 0 0.00E 1 0 0.00E 1 0 0.00E 1 0
0.42 0.00E 1 0 7.69E 2 6 1.09E 2 5 7.69E 2 6 0.00E 1 0 27.69E 2 6 21.09E 2 5 27.69E 2 6
0.47 0.00E 1 0 1.54E 2 5 2.18E 2 5 1.54E 2 5 0.00E 1 0 21.54E 2 5 22.18E 2 5 21.54E 2 5
0.54 0.00E 1 0 2.34E 2 5 3.31E 2 5 2.34E 2 5 0.00E 1 0 22.34E 2 5 23.31E 2 5 22.34E 2 5
0.61 0.00E 1 0 3.18E 2 5 4.49E 2 5 3.18E 2 5 0.00E 1 0 23.18E 2 5 24.49E 2 5 23.18E 2 5
0.69 0.00E 1 0 4.05E 2 5 5.72E 2 5 4.05E 2 5 0.00E 1 0 24.05E 2 5 25.72E 2 5 24.05E 2 5
0.78 0.00E 1 0 4.93E 2 5 6.98E 2 5 4.93E 2 5 0.00E 1 0 24.93E 2 5 26.98E 2 5 24.93E 2 5
0.88 0.00E 1 0 5.59E 2 5 7.90E 2 5 5.59E 2 5 0.00E 1 0 25.59E 2 5 27.90E 2 5 25.59E 2 5
1.00 0.00E 1 0 0.00E 1 0 0.00E 1 0 0.00E 1 0 0.00E 1 0 0.00E 1 0 0.00E 1 0 0.00E 1 0

Note. The results are shown for (a) an 8 3 8 and (b) a 16 3 16 grid.
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